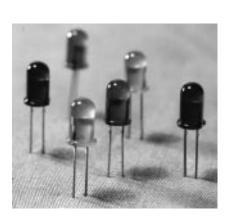
# T-1<sup>3</sup>/<sub>4</sub> (5 mm) High Intensity LED Lamps

# Technical Data

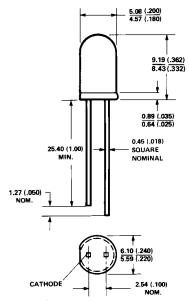
HLMP-331x Series HLMP-341x Series HLMP-351x Series


#### **Features**

- High Intensity
- Choice of 3 Bright Colors High Efficiency Red Yellow High Performance Green
- Popular T-1<sup>3</sup>/<sub>4</sub> Diameter Package
- Selected Minimum Intensities
- Narrow Viewing Angle
- General Purpose Leads

- Reliable and Rugged
- Available on Tape and Reel

## **Description**

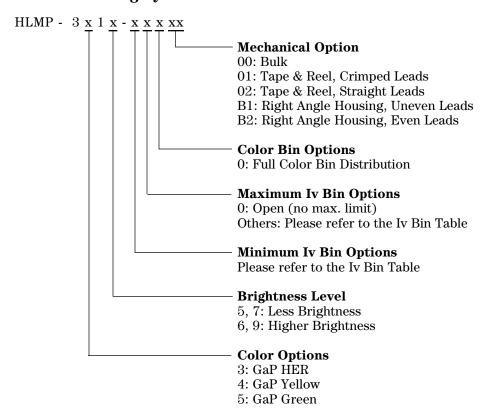

This family of T-1<sup>3</sup>/<sub>4</sub> nondiffused LED lamps is specially designed for applications requiring higher on-axis intensity than is achievable with a standard lamp. The light generated is focused to a narrow beam to achieve this effect.



## **Selection Guide**

|        |                 | Luminous Intensity<br>Iv (mcd) @ 10 mA |       |
|--------|-----------------|----------------------------------------|-------|
| Color  | Part Number     | Min.                                   | Max.  |
|        | HLMP-3315       | 13.8                                   | -     |
| Red    | HLMP-3317       | 22.00                                  | -     |
|        | HLMP-3316-I00xx | 22.0                                   | -     |
|        | HLMP-3316-IJ0xx | 22.0                                   | 70.4  |
|        | HLMP-3415       | 9.2                                    | -     |
| Yellow | HLMP-3416       | 14.7                                   | -     |
|        | HLMP-3416-G00xx | 14.7                                   | -     |
|        | HLMP-3416-IJ0xx | 37.6                                   | 120.2 |
|        | HLMP-3517       | 6.7                                    | -     |
| Green  | HLMP-3519       | 10.6                                   | -     |
|        | HLMP-3519-F00xx | 10.6                                   | -     |
|        | HLMP-3519-IJ0xx | 43.6                                   | 139.6 |

# **Package Dimensions**




NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).

2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1mm (.040") DOWN THE LEADS.

## **Part Numbering System**



# Electrical Characteristics at $T_A = 25$ °C

| Symbol                  | Description                     | Device<br>HLMP-      | Min.        | Тур.              | Max.              | Units          | Test Conditions                                                                                     |
|-------------------------|---------------------------------|----------------------|-------------|-------------------|-------------------|----------------|-----------------------------------------------------------------------------------------------------|
| $I_{ m V}$              | Luminous Intensity              | 3315<br>3316         | 13.8<br>22  | 40.0<br>60.0      |                   | mcd            | $I_F = 10 \text{ mA (Figure 3)}$                                                                    |
|                         |                                 | 3415<br>3416         | 9.2<br>14.7 | 40.0<br>50.0      |                   | mcd            | $I_F = 10 \text{ mA (Figure 8)}$                                                                    |
|                         |                                 | 3517<br>3519         | 6.7<br>10.6 | 50.0<br>70.0      |                   | mcd            | $I_F = 10 \text{ mA (Figure 13)}$                                                                   |
| $2\theta^{1/2}$         | Including Angle<br>Between Half | 3315<br>3316         |             | 35<br>35          |                   | Deg.           | I <sub>F</sub> = 10 mA<br>See Note 1 (Figure 6)                                                     |
|                         | Luminous Intensity Points       | 3415<br>3416         |             | 35<br>35          |                   | Deg.           | $I_F = 10 \text{ mA}$<br>See Note 1 (Figure 11)                                                     |
|                         |                                 | 3517<br>3519         |             | 24<br>24          |                   | Deg.           | $I_F = 10 \text{ mA}$<br>See Note 1 (Figure 16)                                                     |
| $\lambda_{	ext{PEAK}}$  | Peak Wavelength                 | 331X<br>341X<br>351X |             | 635<br>583<br>565 |                   | nm             | Measurement at Peak<br>(Figure 1)                                                                   |
| $\Delta\lambda_{1/2}$   | Spectral Line Halfwidth         | 331X<br>341X<br>351X |             | 40<br>36<br>28    |                   | nm             |                                                                                                     |
| $\lambda_{ m d}$        | Dominant Wavelength             | 331X<br>341X<br>351X |             | 626<br>585<br>569 |                   | nm             | See Note 2 (Figure 1)                                                                               |
| $	au_{ m s}$            | Speed of Response               | 331X<br>341X<br>351X |             | 90<br>90<br>500   |                   | ns             |                                                                                                     |
| С                       | Capacitance                     | 331X<br>341X<br>351X |             | 11<br>15<br>18    |                   | pF             | $V_F = 0$ ; $f = 1$ MHz                                                                             |
| $R\theta_{	ext{J-PIN}}$ | Thermal Resistance              | 331X<br>341X<br>351X |             | 260               |                   | °C/W           | Junction to Cathode<br>Lead                                                                         |
| $V_{\mathrm{F}}$        | Forward Voltage                 | 331X<br>341X<br>351X |             | 1.9<br>2.0<br>2.1 | 2.4<br>2.4<br>2.7 | V              | $I_F = 10 \text{ mA (Figure 2)}$ $I_F = 10 \text{ mA (Figure 7)}$ $I_F = 10 \text{ mA (Figure 12)}$ |
| $V_{\mathrm{R}}$        | Reverse Breakdown Volt.         | All                  | 5.0         |                   |                   | V              | $I_R = 100 \mu\text{A}$                                                                             |
| $\eta_{ m V}$           | Luminous Efficacy               | 331X<br>341X<br>351X |             | 145<br>500<br>595 |                   | lumens<br>Watt | See Note 3                                                                                          |

#### Notes

- 1.  $\theta_{1/2}$  is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 2. The dominant wavelength,  $\lambda_d$ , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 3. Radiant intensity,  $I_e$ , in watts/steradian, may be found from the equation  $I_e = I_v/\eta_v$ , where  $I_v$  is the luminous intensity in candelas and  $\eta_v$  is the luminous efficacy in lumens/watt.

# Absolute Maximum Ratings at $T_A = 25^{\circ}C$

| Parameter                                                   | 331X Series | 341X Series | 351X Series | Units |
|-------------------------------------------------------------|-------------|-------------|-------------|-------|
| Peak Forward Current                                        | 90          | 60          | 90          | mA    |
| Average Forward Current <sup>[1]</sup>                      | 25          | 20          | 25          | mA    |
| DC Current <sup>[2]</sup>                                   | 30          | 20          | 30          | mA    |
| Power Dissipation <sup>[3]</sup>                            | 135         | 85          | 135         | mW    |
| Reverse Voltage ( $I_R = 100 \mu\text{A}$ )                 | 5           | 5           | 5           | V     |
| Transient Forward Current <sup>[4]</sup><br>(10 µsec Pulse) | 500         | 500         | 500         | mA    |
| LED Junction Temperature                                    | 110         | 110         | 110         | °C    |
| Operating Temperature Range                                 | -55 to +100 | -55 to +100 | -20 to +100 | °C    |
| Storage Temperature Range                                   |             |             | -55 to +100 |       |
| Lead Soldering Temperature [1.6 mm (0.063 in.) from body]   |             | 260°C for   | 5 seconds   |       |

#### Notes:

- 1. See Figure 5 (Red), 10 (Yellow), or 15 (Green) to establish pulsed operating conditions.
- 2. For Red and Green series derate linearly from  $50^{\circ}$ C at 0.5 mA/°C. For Yellow series derate linearly from  $50^{\circ}$ C at 0.2 mA/°C.
- 3. For Red and Green series derate power linearly from  $25^{\circ}$ C at 1.8 mW/°C. For Yellow series derate power linearly from  $50^{\circ}$ C at 1.6 mW/°C.
- 4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

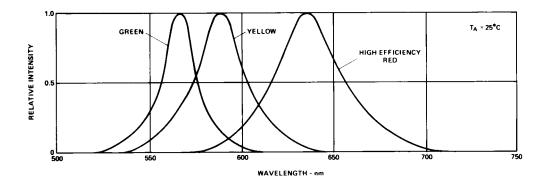



Figure 1. Relative Intensity vs. Wavelength.

# **High Efficiency Red HLMP-331X Series**

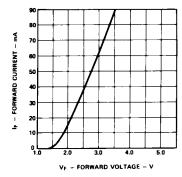



Figure 2. Forward Current vs. Forward Voltage Characteristics.

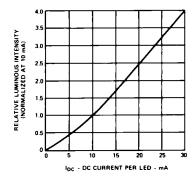



Figure 3. Relative Luminous Intensity vs. DC Forward Current.

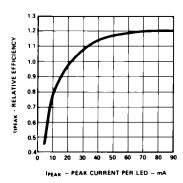



Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

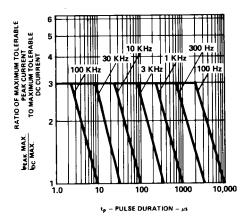



Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration ( $I_{DC}$  MAX as per MAX Ratings).

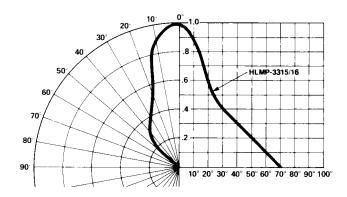



Figure 6. Relative Luminous Intensity vs. Angular Displacement.

## Yellow HLMP-341X Series

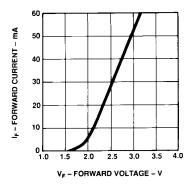



Figure 7. Forward Current vs. Forward Voltage Characteristics.

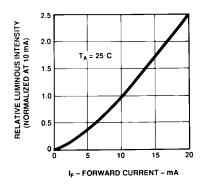



Figure 8. Relative Luminous Intensity vs. DC Forward Current.

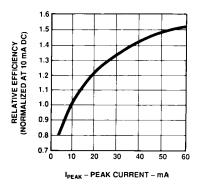



Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

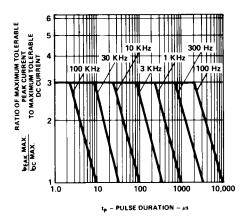



Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration ( $I_{DC}$  MAX as per MAX Ratings).

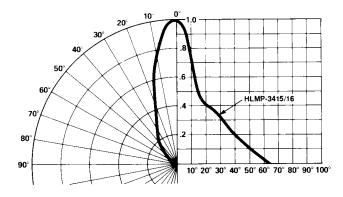



Figure 11. Relative Luminous Intensity vs. Angular Displacement.

## **Green HLMP-351X Series**

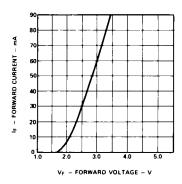



Figure 12. Forward Current vs. Forward Voltage Characteristics.

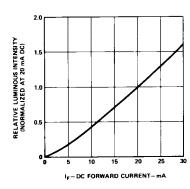



Figure 13. Relative Luminous Intensity vs. DC Forward Current.

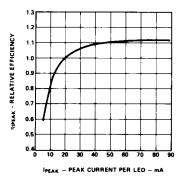



Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

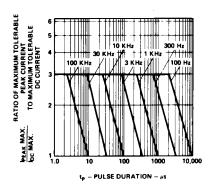



Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration ( $I_{DC}$  MAX as per MAX Ratings).

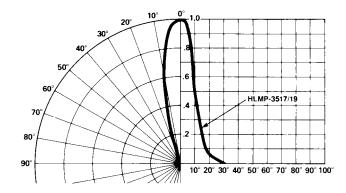



Figure 16. Relative Luminous Intensity vs. Angular Displacement.  $T-1^3/4$  Lamp.

Table 2. Intensity Bin Limit

Table 2. (Cont'd)

Table 2. (Cont'd)

| adie 2. | muen | sity Bin        |         |  |
|---------|------|-----------------|---------|--|
|         |      | Intensity Range |         |  |
| Color   | Bin  | (mcd) Min. Max. |         |  |
| Color   |      | -               | Max.    |  |
|         | H    | 15.5            | 24.8    |  |
|         | I    | 24.8            | 39.6    |  |
|         | J    | 39.6            | 63.4    |  |
|         | K    | 63.4            | 101.5   |  |
|         | L    | 101.5           | 162.4   |  |
|         | M    | 162.4           | 234.6   |  |
|         | N    | 234.6           | 340.0   |  |
|         | О    | 340.0           | 540.0   |  |
| Red     | P    | 540.0           | 850.0   |  |
|         | Q    | 850.0           | 1200.0  |  |
|         | R    | 1200.0          | 1700.0  |  |
|         | S    | 1700.0          | 2400.0  |  |
|         | Т    | 2400.0          | 3400.0  |  |
|         | U    | 3400.0          | 4900.0  |  |
|         | V    | 4900.0          | 7100.0  |  |
|         | W    | 7100.0          | 10200.0 |  |
|         | X    | 10200.0         | 14800.0 |  |
|         | Y    | 14800.0         | 21400.0 |  |
|         | Z    | 21400.0         | 30900.0 |  |

| Table 2. (Cont u) |     |                 |         |  |  |
|-------------------|-----|-----------------|---------|--|--|
|                   |     | Intensity Range |         |  |  |
|                   |     | (mcd)           |         |  |  |
| Color             | Bin | Min.            | Max.    |  |  |
|                   | G   | 16.6            | 26.5    |  |  |
|                   | Н   | 26.5            | 42.3    |  |  |
|                   | I   | 42.3            | 67.7    |  |  |
|                   | J   | 67.7            | 108.2   |  |  |
|                   | K   | 108.2           | 173.2   |  |  |
|                   | L   | 173.2           | 250.0   |  |  |
|                   | M   | 250.0           | 360.0   |  |  |
| Yellow            | N   | 360.0           | 510.0   |  |  |
|                   | О   | 510.0           | 800.0   |  |  |
|                   | P   | 800.0           | 1250.0  |  |  |
|                   | Q   | 1250.0          | 1800.0  |  |  |
|                   | R   | 1800.0          | 2900.0  |  |  |
|                   | S   | 2900.0          | 4700.0  |  |  |
|                   | Т   | 4700.0          | 7200.0  |  |  |
|                   | U   | 7200.0          | 11700.0 |  |  |
|                   | V   | 11700.0         | 18000.0 |  |  |
|                   | W   | 18000.0         | 27000.0 |  |  |

| Intensity Range |     |         |         |  |
|-----------------|-----|---------|---------|--|
|                 |     | (mcd)   |         |  |
| Color           | Bin | Min.    | Max.    |  |
|                 | Е   | 7.6     | 12.0    |  |
|                 | F   | 12.0    | 19.1    |  |
|                 | G   | 19.1    | 30.7    |  |
|                 | Н   | 30.7    | 49.1    |  |
|                 | I   | 49.1    | 78.5    |  |
|                 | J   | 78.5    | 125.7   |  |
|                 | K   | 125.7   | 201.1   |  |
|                 | L   | 201.1   | 289.0   |  |
| Green           | M   | 289.0   | 417.0   |  |
|                 | N   | 417.0   | 680.0   |  |
|                 | О   | 680.0   | 1100.0  |  |
|                 | P   | 1100.0  | 1800.0  |  |
|                 | Q   | 1800.0  | 2700.0  |  |
|                 | R   | 2700.0  | 4300.0  |  |
|                 | S   | 4300.0  | 6800.0  |  |
|                 | T   | 6800.0  | 10800.0 |  |
|                 | U   | 10800.0 | 16000.0 |  |
|                 | V   | 16000.0 | 25000.0 |  |
|                 | W   | 25000.0 | 40000.0 |  |

Maximum tolerance for each bin limit is  $\pm$  18%.

# **Color Categories**

|        |       | Lambda (nm) |       |  |
|--------|-------|-------------|-------|--|
| Color  | Cat # | Min.        | Max.  |  |
|        | 6     | 561.5       | 564.5 |  |
|        | 5     | 564.5       | 567.5 |  |
| Green  | 4     | 567.5       | 570.5 |  |
|        | 3     | 570.5       | 573.5 |  |
|        | 2     | 573.5       | 576.5 |  |
|        | 1     | 582.0       | 584.5 |  |
|        | 3     | 584.5       | 587.0 |  |
| Yellow | 2     | 587.0       | 589.5 |  |
|        | 4     | 589.5       | 592.0 |  |
|        | 5     | 592.0       | 593.0 |  |

Tolerance for each bin limit is  $\pm~0.5$  nm.

## **Mechanical Option Matrix**

| Mechanical Option Code                                         | Definition                                                     |  |
|----------------------------------------------------------------|----------------------------------------------------------------|--|
| 00                                                             | Bulk Packaging, minimum increment 500 pcs/bag                  |  |
| 01 Tape & Reel, crimped leads, minimum increment 1300 pcs/bag  |                                                                |  |
| 02 Tape & Reel, straight leads, minimum increment 1300 pcs/bag |                                                                |  |
| B1 Right Angle Housing, uneven leads, minimum increment 500    |                                                                |  |
| B2                                                             | Right Angle Housing, even leads, minimum increment 500 pcs/bag |  |

### Note:

All Categories are established for classification of products. Products may not be available in all categories. Please contact your local Agilent representative for further clarification/information.

